
IWSCFF 17-42

DISTRIBUTED FAST MOTION PLANNING FOR SPACECRAFT
SWARMS IN CLUTTERED ENVIRONMENTS USING SPHERICAL

EXPANSIONS AND SEQUENCE OF CONVEX OPTIMIZATION
PROBLEMS

Saptarshi Bandyopadhyay*, Francesca Baldini†, Rebecca Foust‡, Amir
Rahmani§, Jean-Pierre de la Croix¶, Soon-Jo Chung||, Fred Y. Hadaegh**

This paper presents a novel guidance algorithm for spacecraft swarms in an envi-
ronment cluttered with many obstacles like a debris field or the asteroid belt. The
objective of this algorithm is to reconfigure the swarm to a desired formation in
a distributed manner while minimizing fuel and avoiding collisions among them-
selves and with the obstacles. The agents first use a spherical-expansion-based
sampling algorithm to cooperatively explore the workspace and find paths to the
desired terminal positions. Using a distributed assignment algorithm, the agents
converge on an optimal assignment of the target locations in the desired formation.
Then each agent generates a locally optimal trajectory from its current location to
its terminal position by solving a sequence of convex optimization problems. As
the agent moves along this trajectory, it receives the position of other agents and
updates its trajectory to avoid collisions with other agents and the obstacles. Thus
the swarm achieves the desired formation in a distributed manner while avoid-
ing collisions. Moreover, this algorithm is computationally efficient, therefore it
can be implemented onboard resource-constrained spacecraft. Simulations results
show that the proposed distributed algorithm can be used by a spacecraft swarm
to reconfigure a desired formation around an asteroid in a collision-free manner.

INTRODUCTION

Trajectory planning for multi-spacecraft formations and swarms, composed of hundreds to thou-
sands of spacecraft, has been a major area of research over the past decade.1–6 Although there have
been significant advances in the development of swarm guidance algorithms for cooperative space-
craft, they cannot be directly applied to handle uncooperative obstacles. In this paper, we present
a novel guidance algorithm for spacecraft swarms in an environment cluttered with many obstacles
like a debris field or the asteroid belt. The objective of this algorithm is to reconfigure the swarm to

*Robotics Technologist, Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech), Pasadena, Califor-
nia, 91109, USA; Saptarshi.Bandyopadhyay@jpl.nasa.gov

†Graduate Student, Department of Aerospace, Caltech, Pasadena, California, 91125, USA; fbaldini@caltech.edu
‡Graduate Student, Department of Aerospace Engineering, UIUC, Urbana, Illinois, 61801, USA; foust3@illinois.edu
§Research Scientist, JPL, Caltech, Pasadena, California, 91109, USA; Amir.Rahmani@jpl.nasa.gov
¶Robotics Systems Engineer, JPL, Caltech, Pasadena, California, 91109, USA; Jean-Pierre.de.la.Croix@jpl.nasa.gov
||Associate Professor, Department of Aerospace, Caltech, Pasadena, California, 91125, USA; sjchung@caltech.edu Senior
Member, AIAA.

**Senior Research Scientist and Technical Fellow, JPL, Caltech, Pasadena, California, 91109, USA;
fred.y.hadaegh@jpl.nasa.gov. Fellow, AIAA.

1

a desired formation in a distributed manner while minimizing fuel and avoiding collisions among
themselves and with the obstacles.

In the robotics literaure, sampling-based motion planning algorithms have been used to plan
trajectories through cluttered envionements.7–10 In our prior work in Ref. 11, we used a sampling-
based algorithm for planning the trajectory of a single spacecraft through a 3D cluttered environ-
ment. Our novel spacecraft trajectory planning algorithm, called the Spherical Expansion and Se-
quential Convex Programming (SE–SCP) algorithm, is computationally efficient for real-time im-
plementation on resource constrained systems and guarantees local optimality within the homotopy
class (i.e., the class of local trajectories that can be reached from the original trajectory using con-
tinuous deformations).11 The SE–SCP algorithm first explores the 3D workspace using spherical
expansions (as shown in Fig. 1) to generate a feasible path from the start position to the target
position. Then the algorithm generates a fuel-optimal trajectory using a sequence of convex opti-
mization problems (as shown in Fig. 2). This trajectory is locally optimal within its homotopy class
and is globally optimal as the number of samples in the spherical expansion step tends to infinity.

Figure 1. Spherical expansion is used to find a path from start to target position11

Figure 2. Sequence of convex optimization problems generates a locally optimal trajectory11

In this paper, we extend the SE–SCP algorithm for distributed trajectory planning of spacecraft
swarms in cluttered environments. The main challenges that arise include: (i) The spacecraft or
agents need to explore the entire workspace in a cooperative manner because it might be impossible

2

or highly inefficient to explore the entire workspace alone. (ii) The agents need to optimally assign
their target positions among themselves. (iii) While traveling to their assigned target position, the
agents need to avoid collisions with the obstacles and among themselves. These challenges are
addressed in this paper.

This paper is organized as follows. The problem statement and the multi-agent SE–SCP algorithm
are described in Section 2 and 3 respectively. Numerical simulations are presented in Section 4 and
the paper is concluded in Section 5.

PROBLEM STATEMENT

Let X ∈ R3 represent the 3D workspace in Local-Vertical-Local-Horizontal (LVLH) frame, as
shown in Fig. 3. Let Xobs ∈ X represent the stationary obstacles in this workspace. The region
where the swarm can maneuver freely is given by Xfree = X/Xobs. We assume that Xobs is known
to each agent.

LetN agents belong to this swarm. The initial positions of theseN agents are given byXi
init ∈ X

for all i ∈ {1, . . . , N}. Note that the agent index is denoted by the superscript. Similarly, the N
terminal positions are given by Xj

goal ∈ X for all j ∈ {1, . . . , N}. The actual assignment of the
agents to terminal positions will be performed later because the cost-to-go for each agent cannot
be calculated beforehand on account of the obstacles. We assume that Xobs and Xj

goal ∈ X for all
j ∈ {1, . . . , N} are known to each agent.

Figure 3. The 3D workspace X , the obstacles Xobs, the initial positions Xi
init,∀i ∈

{1, . . . , N} (in blue), and the terminal positions Xj
goal,∀j ∈ {1, . . . , N} (in red) for

N = 6 agents are shown.

To avoid inter-agent collisions, each agent must maintain at least rcol distance with every other
agent in the swarm. Moreover, let rmax represent the maximum distance that any agent can travel
in any time instant. We assume that the initial and final positions satisfy this collision avoidance
constraints, i.e.,∥∥∥Xi

init −X`
init

∥∥∥
2
≥ rcol + rmax , ∀i, ` ∈ {1, . . . , N}, i 6= ` (1)∥∥∥Xj

goal −X
`
goal

∥∥∥
2
≥ rcol + rmax , ∀j, ` ∈ {1, . . . , N}, j 6= ` (2)

The objective of the Multi-Agent Spherical Expansion and Sequential Convex Programming

3

(MA–SE–SCP) algorithm is to ensure that all the N agents reach the N terminal positions while
avoiding collisions with the obstacles and among themselves.

MULTI-AGENT SPHERICAL EXPANSION AND SEQUENTIAL CONVEX PROGRAM-
MING (MA–SE–SCP) ALGORITHM

The MA–SE–SCP algorithm’s pseudocode for a single agent is presented in Algorithm 1. During
the Initialization step, the necessary data structures are created and initialized. Then the Spherical
Expansion step and the Sequential Convex Programming step are executed iteratively until the agent
reaches its terminal position.

Algorithm 1 MA–SE–SCP Algorithm for the ith agent
1: riinit ← MinDistObs(Xi

init,Xobs) . Initialization step
2: V i ← {Xi

init[r
i
init]}

3: for j = {1, . . . , N} do
4: rjgoal ← MinDistObs(Xj

goal,Xobs)

5: V i ← V i ∪ {Xj
goal[r

j
goal]}

6: end for
7: E i ← ∅, cPold

←∞, cxold
←∞, Pold ← ∅, Freached ← 0,

8: F iconnected ← 0, Xi
term ← ∅

9: while Freached 6= 1 do
10: Y `, X`

new, F
`
connected,∀` ∈ {1, . . . , N} ← AllAgentData . Spherical Expansion step

11: X iobs = Xobs

12: for ` = {1, . . . , N}/{i} do
13: X iobs = X iobs ∪ GenerateSphere(Y `, rcol + rmax)
14: V i ← V i ∪ {X`

new[0]}
15: end for
16: V inew ← ∅
17: for all Xv[rv] ∈ V i do
18: rv ← MinDistObs(Xv,X iobs)
19: V inew ← V inew ∪ {Xv[rv]}
20: end for
21: V i ← V inew

22: Xrand ← GenerateSample

23: Xnearest ← NearestNode(V i, Xrand)
24: Xi

new ← Steer(Xrand, Xnearest)
25: rinew ← MinDistObs(Xnew,X iobs)
26: V i ← V i ∪ {Xi

new[rinew]}
27: E i ← ∅
28: for all Xv[rv], Xw[rw] ∈ V i and Xv 6= Xw do
29: if ‖Xv −Xw‖2 ≤ rv + rw then
30: cv,w ← EdgeCost(Xv, Xw)
31: cw,v ← EdgeCost(Xw, Xv)

32: E i ← E i ∪ {
−−−−→
Xv Xw[cv,w]} ∪ {

−−−−→
Xw Xv[cw,v]}

33: end if
34: end for

4

35: if Xi
term = ∅ then . Sequential Convex Programming step

36: if
∑N

`=1 F
`
connected = N2 then

37: Xi
term ← DistributedAssignment

38: V i ← V i ∪ {Xi
term[0]}

39: else
40: F iconnected ← 0
41: for j = {1, . . . , N} do
42: P i,j , cP i,j ← MinPath(Gi = (V i, E i), Xi

init, X
j
goal)

43: if cP i,j <∞ then
44: F iconnected ← F iconnected + 1
45: end if
46: end for
47: end if
48: else
49: if Xi

term = Y i then
50: Freached ← 1
51: xi ← ∅
52: else
53: Freached ← 0
54: P i, cP i ← MinPath(Gi = (V i, E i), Y i, Xi

term)
55: (xi1,u

i
1, cxi

1
)← OptimalTraj(P i)

56: for k = {1, . . . , NSCP } do
57: P ik ← GeneratePath(xik)
58: (xik+1,u

i
k+1, cxi

j+1
)← OptimalTraj(P ik,x

i
k,u

i
k)

59: end for
60: xi ← xiNSCP +1

61: end if
62: end if
63: Y i ← AgentMotion(xi)
64: V i ← V i ∪ {Y i[0]}
65: end while

Initialization Step

Each agent’s MA–SE–SCP algorithm intends to generates a directed graph Gi = (V i, E i) in the
safe region Xfree. Each node in the set of nodes V i stores the position of the node and the minimum
distance of that node from any obstacle (both in Xobs and other agents). For the nodeXi

init, the min-
imum distance riinit from the obstacleXobs is obtained using the function MinDistObs(Xinit,Xobs),
which takes in the position of the node and the obstacles in the workspace and returns the radius of
the largest sphere centered on that node which does not intersect with any obstacle. Similarly, the
minimum distances rjgoal from the obstacle Xobs is obtained for all the terminal positions Xj

goal for

all j ∈ {1, . . . , N}. Then the set of nodes V i is initialized with the nodesXi
init[r

i
init] andXj

goal[r
j
goal]

for all j ∈ {1, . . . , N}.
Each element in the set of edges E i stores the edge’s starting and ending nodes and the cost of

traversing that edge. The set of edges E i is initialized with the empty set. Furthermore, the path

5

P iold is set to an empty set and the cost for the path cP i
old

and the trajectory cxi
old

are set to infinity.
The flag Freached that denotes if the agent has reached its terminal position is set to zero. The flag
F iconnected that denotes the number of terminal positions that the agent is connected to is set to zero.
The assigned terminal position Xi

term of the ith agent is also set to an empty set.

Spherical Expansion Step

During this step, the workspace is explored using the sampling technique shown in lines 10–34
in Algorithm 1. The objective of this step is to populate the graph Gi = (V i, E i) so that paths from
Xi

init to Xj
goal for all j ∈ {1, . . . , N} can be found.

Let Y ` ∈ X for all ` ∈ {1, . . . , N} represent the current position of each agent. The function
AllAgentData gives each agent the position Y `, the new nodes X`

new, and the flag F `connected

of all the agents using inter-agent communication. During the first iteration, no new nodes are
communicated.

The lines 11–15 create a new obstacle set X iobs where the original obstacle set Xobs is augmented
with spheres of radius (rcol + rmax) centered on the position of all the other agents. Thus X ifree =
X/X iobs represents the region where the ith agent can maneuver freely.

The new nodes from other agents X`
new,∀` ∈ {1, . . . , N} are also added to V i during lines 11–

15. The lines 16–21 are used to update the radius of the nodes in V i with the new obstacles set
X iobs.

The MA–SE–SCP algorithm can use both random or quasi-random (deterministic) sampling since
the randomness of the samples is not crucial for motion planning applications.12 For a given sam-
pling choice, the function GenerateSample returns a random sample Xrand ∈ X . Next, the func-
tion NearestNode(V i, Xrand) takes in the current set of nodes V i and the given sample Xrand and
returns the nodeXnearest that is nearest toXrand. Note that the minimum distance from the obstacles
rnearest for the node Xnearest is already stored in V i.

The function Steer(Xrand, Xnearest) generates the new point Xi
new according to either of the

following two cases: (i) IfXrand is serendipitously insideXnearest’s sphere, then new pointXi
new =

Xrand. (ii) Otherwise, the new point Xi
new is on the surface of Xnearest’s sphere and closest to the

sample Xrand. In contrast with the classical steering function in the literature,7 where the step-
size of the algorithm is fixed, the radius of the sphere in the MA–SE–SCP algorithm is variable
and adapts with the density of obstacles. Therefore, the MA–SE–SCP algorithm generally finds a
feasible path faster than other sampling-based algorithms. The minimum distance from obstacles
rinew for the point Xi

new is computed using the function MinDistObs. The new node Xi
new[rinew] is

added to the set of nodes V i.

Finally, the lines 27–34 are used to generate the new edge set E i. There exists a feasible collision-
free path between each vertex inXv and Xw because their spheres intersect. We generate the edge
that connect these nodes using the function EdgeCost(Xv, Xw), which takes in the two nodes
and outputs the cost of traversing the directed edge cv,w from Xv to Xw and it depends on the
given convex objective function, such that the trajectory always remains inside the union of the
two spheres. Then the directed edge

−−−−→
Xv Xw[cv,w] is added to the set of edges E i. Similarly, the

cost for traversing the directed edge cw,v from Xw to Xv is generated and this new directed edge
−−−−→
Xw Xv[cw,v] is added to E i.

6

Sequential Convex Programming Step

During this step in lines 35–64 in Algorithm 1, each agent first determines its terminal position
and then generates the locally optimal trajectory to its terminal position.

If the terminal position Xi
term is not yet assigned (line 35), then the agent first checks if all the

agents are connected to all the terminal positions. If this is the case, then the agent execute a dis-
tributed assignment algorithm to converge on a suitable assignment of terminal positions (line 37).
A number of distributed assignment algorithms using linear programming,13 auction algorithm,14

and variable-target-number auction algorithm3 exist in the literature, therefore they are not covered
in this paper.

Otherwise the ith agent counts the number of terminal positions it is connected to in lines 40–46.
The function MinPath(Gi = (V i, E i), Xi

init, X
j
goal) takes in the current graph, the initial and goal

positions, and returns the minimum-cost path P i,j along with the cost of that path cP i,j . The path
P i,j = {X1[r1], X2[r2], . . . , Xm[rm]} is a sequence of m nodes with corresponding radii, where
X1 = Xi

init and Xm = Xj
goal. The cost of the path cP i,j is the sum of the edges along that path.

Graph search algorithms like Dijkstra’s algorithm can be used for this step. If no path exists, then
cP i,j is set to infinity.

Then the agent checks if it has already reached the terminal position, and sets the flag Freached

accordingly. Once a path from the current position Y i to the terminal position Xi
term is found, the

function OptimalTraj(P i) takes in this new path P i and returns the optimal trajectory xi1, ui1 and
the cost of traversing this trajectory cxi

1
by solving Problem 1(3)–(10). If no additional trajectory

is provided to the function OptimalTraj, then a nominal trajectory is used for linearization of the
dynamics in (10).

Problem 1: Discrete-time Convex Optimal Motion Planning Problem

minimize
x[k],∀k∈{0,...,T}

u[k], ∀k∈{0,...,T−1}

T−1∑
k=0

c (u[k]) ∆ , (3)

subject to p[0] = Xinit , (4)

p[T] = Xgoal , (5)

‖p[2`]−X`‖2 ≤ r` , ∀` ∈ {1, . . . , n− 1} , (6)

‖p[2`]−X`+1‖2 ≤ r`+1 , ∀` ∈ {1, . . . , n− 1} , (7)

‖p[2`+ 1]−X`+1‖2 ≤ r`+1 , ∀` ∈ {1, . . . , n− 2} , (8)

u[k] ∈ U , ∀k ∈ {0, . . . , T − 1} , (9)

x[k + 1] = F [k]x[k] +G[k]u[k] +H[k] ,

∀k ∈ {0, . . . , T − 1} . (10)

Here ∆ is the time step of the algorithm. See Appendix for a discussion on linearization and
discretization of spacecraft dynamics. All even points are the intersection of two spheres and all
odd points are inside one sphere. This process is executed NSCP times so that a locally optimal
trajectory xi is generated.

The agent traverses for one time instant along this locally optimal trajectory xi and the function
AgentMotion(xi) gives the new current location of the ith agent. Thus the MA–SE–SCP algorithm
ensures that the ith agent reaches its terminal position.

7

NUMERICAL SIMULATIONS

For the problem setup shown in Fig. 3, a few iterations of the Spherical Expansion step are shown
in Fig. 4. Note that each agent is able to generate a dense graph within 30 iterations because each
agent also uses the nodes generated by other agents.

Figure 4. Iterations 1, 5, 15, and 30 of the Spherical Expansion step. All agents (in
magenta) are located at their starting positions.

A few steps of the sequential convex programming step are show in Fig. 5. Note that each agent
updates its optimal trajectory based on its current location and the location of other agents while
avoiding collisions with other agents and the obstacles.

8

Figure 5. Iterations 32, 36, 40, 44, and 48 of the Sequential Convex Programming
step. All agents (in magenta) are moving to their terminal positions.

9

CONCLUSIONS

In this paper, we presented the MA–SE–SCP algorithm for motion planning of spacecraft swarm
in cluttered environments. In the first step of our algorithm, the agents use a spherical-expansion-
based sampling algorithm to cooperatively explore the workspace and map the obstacles in the
environment. During the spherical expansion step, each agent stores the position of randomly gen-
erated nodes in the free space (the space that is free from obstacles) and the radius of the largest
sphere that does not intersect with any obstacle. The agents exchange the positions of the nodes
and their radii with their neighboring agents to generate a global view of the workspace while each
agent has only explored a much smaller region. This step ensures that all the target positions are
strongly connected in the global network of nodes.

Using a distributed assignment algorithm, the agents converge on an optimal assignment of the
target locations in the desired formation. The agents use their global network of nodes to approxi-
mately determine their distance to each of the target locations. Then each agent generates a locally
fuel-optimal trajectory from its current location to its target position using a sequence of convex
optimization problems. As the agent moves along this trajectory, it detects the position of other
agents and updates its trajectory to avoid collisions with other agents and the obstacles. Thus the
swarm achieves the desired formation in a distributed manner while avoiding collisions.

This algorithm is computationally efficient, therefore it can be implemented onboard resource-
constrained spacecraft. Simulations results demonstrate the effectiveness of the proposed distributed
algorithm for guidance of spacecraft swarms.

ACKNOWLEDGMENT

This work was supported by the Jet Propulsion Laboratory’s Research and Technology Devel-
opment (R&TD) program. Part of the research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and Space Ad-
ministration. ©2017 California Institute of Technology. Government sponsorship acknowledged.

APPENDIX

Linearization and Discretization of Spacecraft Dynamics

Let τ0 and τf represent the starting and final times respectively. Let xi(τ) ∈ Rnx and ui(τ) ∈
Rnu represent the ith agents’s state vector and control input at time τ . The agent’s state vector can

be further decomposed into xi(τ) =
(
pi(τ)T , ṗi(τ)T ,θi(τ)T , θ̇

i
(τ)T

)T
, where pi(τ) ∈ R3 and

θi(τ) represent the vehicle’s position and attitude vectors. The spacecraft dynamics are given by:

ẋi(τ) = f
(
xi(τ),ui(τ)

)
, ∀τ ∈ [τ0, τf] , (11)

We now transform this continuous-time dynamics into a discrete-time dynamics so that it can be
efficiently solved using sequential convex programming. Let t[k], ∀k ∈ {0, . . . , T} represent the
discrete time instants, where T is the number of discrete time steps (i.e., t[0] = τ0 and t[T] = τf).
Let ∆ represents the time step size (i.e., ∆ = t[k + 1] − t[k]). Therefore, t[k] = τ0 + k∆ for
all k ≥ 1. The state variables are discretized using a zero-order hold approach such that for all

10

k ∈ {0, . . . , T − 1}:

u(τ) = u[k], τ ∈ [t[k], t[k + 1]) , (12)

x(τ) = x[k], τ ∈ [t[k], t[k + 1]) , (13)

∴ p(τ) = p[k] , θ(τ) = θ[k] .

In order to write the spacecraft’s dynamics equations (11) in a discrete-time form, this equation is
first linearized around a point (x?,u?), which need not be an equilibrium point, as follows:

ẋ(τ) = f (x?,u?) +A (x?,u?, τ) · (x(τ)− x?) +B (x?,u?, τ) · (u(τ)− u?), (14)

where A (x?,u?, τ) =
∂f (x(τ),u(τ))

∂x(τ)

∣∣∣∣
(x?,u?)

, (15)

B (x?,u?, τ) =
∂f (x(τ),u(τ))

∂u(τ)

∣∣∣∣
(x?,u?)

. (16)

Note that the matrices A (x?,u?, τ) and B (x?,u?, τ) in (15)–(16) are functions of the point
(x?,u?) and time τ . Equation (14) is then discretized using a zero-order hold approach as fol-
lows:

x[k + 1] = F [k]x[k] +G[k]u[k] +H[k] , (17)

whereF [k] = eA(x?,u?,tk)∆ , (18)

G[k] =

∫ t[k+1]

t[k]
eA(x?,u?,τ)·(t[k+1]−τ)B (x?,u?, τ) dτ , (19)

H[k] =

∫ t[k+1]

t[k]
eA(x?,u?,τ)·(t[k+1]−τ)

(
f (x?,u?)−A (x?,u?, τ)x? −B (x?,u?, τ)u?

)
dτ .

(20)

These are the transformed discrete-time dynamics equations used in Problem 1(3)–(10).

REFERENCES
[1] S. Bandyopadhyay, R. Foust, G. P. Subramanian, S.-J. Chung, and F. Y. Hadaegh, “Review of Formation

Flying and Constellation Missions using Nanosatellites,” J. Spacecraft and Rockets, Vol. 53, No. 3,
2016, pp. 567–578. to appear.

[2] D. Morgan, S.-J. Chung, L. Blackmore, B. Acikmese, D. Bayard, and F. Y. Hadaegh, “Swarm-Keeping
Strategies for Spacecraft under J2 and Atmospheric Drag Perturbations,” J. Guid. Control Dyn., Vol. 35,
No. 5, 2012, pp. 1492 – 1506.

[3] D. Morgan, G. P. Subramanian, S.-J. Chung, and F. Y. Hadaegh, “Swarm Assignment and Trajectory
Optimization Using Variable-Swarm, Distributed Auction Assignment and Sequential Convex Program-
ming,” Int. J. Robotics Research, Vol. 35, 2016, pp. 1261–1285.

[4] S. Bandyopadhyay, S.-J. Chung, and F. Y. Hadaegh, “A Probabilistic Eulerian Approach for Path Plan-
ning of a Large-Scale Swarm of Agents,” IEEE Trans. Robotics, 2016. accepted.

[5] S. Bandyopadhyay, S.-J. Chung, and F. Y. Hadaegh, “A Probabilistic Eulerian Approach for Motion
Planning of a Large-Scale Swarm of Robots,” IEEE/RSJ Int. Conf. Intell. Robots Syst., Daejeon, South
Korea, Oct. 2016.

[6] D. Morgan, G. P. Subramanian, S. Bandyopadhyay, S.-J. Chung, and F. Y. Hadaegh, “Probabilistic guid-
ance of distributed systems using sequential convex programming,” Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Chicago, IL, Sept. 2014, pp. 3850–3857.

[7] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” International
Journal of Robotics Research, Vol. 30, No. 7, 2011, pp. 846–894.

11

[8] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic roadmaps for path
planning in high-dimensional configuration spaces,” IEEE Transactions on Robotics and Automation,
Vol. 12, No. 4, 1996, pp. 566–580.

[9] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” Int. J. Robotics Research,
Vol. 20, No. 5, 2001, pp. 378–400.

[10] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching tree: A fast marching sampling-
based method for optimal motion planning in many dimensions,” Int. J. Robotics Research, Vol. 34,
No. 7, 2015, pp. 883–921.

[11] F. Baldini, S. Bandyopadhyay, R. Foust, S.-J. Chung, A. Rahmani, J.-P. d. l. Croix, A. Bacula, C. M.
Chilan, and F. Y. Hadaegh, “Fast Motion Planning for Agile Space Systems with Multiple Obstacles,”
AIAA/AAS Astrodynamics Specialist Conference, Long Beach, CA, 2016.

[12] L. Janson, B. Ichter, and M. Pavone, “Deterministic sampling-based motion planning: Optimality, com-
plexity, and performance,” arXiv preprint arXiv:1505.00023, 2015.

[13] D. Richert and J. Cortés, “Robust distributed linear programming,” IEEE Trans. Autom. Control, Vol. 60,
No. 10, 2015, pp. 2567–2582.

[14] M. M. Zavlanos, L. Spesivtsev, and G. J. Pappas, “A Distributed Auction Algorithm for the Assignment
Problem,” IEEE Conf. Decision Control, Cancun, Mexico, Dec. 2008, pp. 1212–1217.

12

	Introduction
	Problem Statement
	Multi-Agent Spherical Expansion and Sequential Convex Programming (MA–SE–SCP) algorithm
	Initialization Step
	Spherical Expansion Step
	Sequential Convex Programming Step

	Numerical Simulations
	Conclusions
	Linearization and Discretization of Spacecraft Dynamics

